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Abstract 
 
Forecasters often utilize large amounts of personal or commercially sensitive data. This data can be 
protected using privacy methods that mitigate privacy concerns and enable compliance with 
privacy laws and regulations. However, existing privacy methods degrade forecast accuracy to 
unusable levels. To overcome this problem, we propose a matrix-based privacy method called k-
nearest time series + (k-nTS+) swapping that preserves time series features to maintain forecast 
accuracy. We apply our privacy method to a forecasting competition data set and find that k-nTS+ 
swapping maintains forecast accuracy and preserves the distribution of time series features much 
better than competitor methods at similar privacy levels. The k-nTS+ protected time series are also 
more representative of the original data, potentially leading to increased trust between data 
owners and forecasters. Using our approach, data owners can share representative time series data 
with useful features and significantly reduced privacy concerns. This can increase data availability 
to the forecasting community and give privacy-conscious data owners a competitive advantage.  
 
Keywords: data privacy; time series features; forecast accuracy; identification disclosure risk; 
representativeness 
 
1. Introduction 
 
Personally identifiable time series, such as household energy consumption and smart meter data 
(Véliz & Grunewald, 2018), and consumer behavioral data from connected devices (Boone et al., 
2019), are abundant and require protection. Recently, the General Data Protection Regulation 
(GDPR)2 forced data owners to either anonymize their personal data or place strict limitations on 
data transfers and processing3.  However, past research found that anonymizing time series data by 
adding random noise to time series values significantly reduced forecast accuracy (Gonçalves et al. 
2021a).  As a result, forecasters (Gonçalves et al., 2021b) used complex data processing solutions to 
share accurate forecasts without sharing the adjoining time series data. In this paper, we propose a 
privacy solution for data owners to anonymize time series data directly with good forecast 
accuracy.  
 
Time series data are either stored in a single data set (centralized) or spread across multiple data 
owners and/or data sets (decentralized). In the decentralized scenario (e.g., in the renewable 

 

 
2 For legislation examples in the United States, see this map. 
 

3 See articles 6, 45, and 46 of the GDPR. 

https://iapp.org/resources/article/us-state-privacy-legislation-tracker/


energy sector), multi-party computation and federated learning enable privacy-preserving 
collaborative forecasting to ensure accurate forecasts while protecting sensitive data (Gonçalves et 
al., 2021a; Gonçalves et al., 2021b; Sommer et al., 2021). For example, data owners can sell time 
series data to a market operator who then sells forecasts of the time series data to multiple buyers.  
This approach has the advantage of creating a market of economic incentives for data sharing while 
limiting data transfer and protecting privacy.  However, there are still privacy risks including 
potential data breaches with the transfer and storage of the time series data to the market operator. 
 
Our paper focuses on the centralized scenario where a single data owner uses privacy methods to 
protect the original time series data set. These privacy methods anonymize the time series data by 
directly altering the values within the data set to increase the privacy level of the protected data set.  
This approach assumes the data gets out eventually through an internal employee (or data breach) 
and protects against this worst-case scenario. The primary goal of the privacy methods is to limit 
the ability of an adversary to identify data subjects (identification disclosure, in our case, 
discovering the true identity of a time series) and learn sensitive information about them (attribute 
disclosure, learning sensitive values after an identification is made). The secondary goal of the 
privacy methods and the primary concern for forecasters is that these privacy methods do not 
significantly reduce forecast accuracy. 
 
Our contributions to the literature are two-fold. First, we measure the changes in forecast accuracy 
from multiple forecasting models and privacy methods. The literature demonstrated that 
differential privacy degrades forecast accuracy for VAR models and recurrent neural networks 
(RNNs) (Gonçalves et al., 2021a), but little work explains why different forecasting models produce 
different accuracies on protected data. We newly analyze how time series features change vis-à-vis 
accuracy and show which forecasting models are more robust to changes in time series features 
after privacy protection. We also examine whether the magnitude, direction, or volatility of these 
privacy adjusted forecasts improve forecast accuracy.  
 
Second, we propose a matrix-based privacy method called k-nTS+ that limits the degradation in 
forecast accuracy due to privacy protection. To the best of our knowledge, previous research does 
not prioritize the forecast accuracy of protected data in a centralized scenario where the entire data 
set is shared.  In the privacy literature, the usefulness of protected data is often overlooked (Blanco-
Justicia et al., 2022), but is of utmost concern to forecasters.  Recent research (Schneider et. al., 
2018) maintained marketing metrics within 10-15% of the original by including a marketing loss 
function in their privacy method.  Similarly, we use time series features predictive of forecast 
accuracy in our k-nTS+ swapping method. However, including all of the features would significantly 
increase the dimensionality and reduce the efficiency of a swapping process. To address this 
problem for our k-nTS+ swapping method, a random forest-based recursive feature elimination 
(RFE) algorithm can be applied to features initially selected by RReliefF (Robnik-Sikonja & 
Kononenko, 2003). Prior work has shown that random forest-based RFE is efficient when applied to 
sets of highly correlated features (Gregorutti et al. 2017). 
 
For a simple illustration of feature-based swapping, consider the example shown in Figure 1. The 
time series in the middle plot is a simulated AR(1) process with autoregressive parameter ϕ1 = 0.8. 
The series on the left is the same simulated series with random noise added to each time period 
proportional to the standard deviation of the simulated series. The series on the right is generated 
by randomly swapping the values of the middle series with values from two other simulated AR(1) 
processes, both with ϕ1 = 0.8.  
 
 



Figure 1: Comparison of protected AR(1) processes to the original AR(1) process. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Estimating an ARIMA(1, 0, 0) model on the simulated series in the middle yields an estimate of 
ϕ1̂ = 0.73 with a standard error of 0.07, while the noised series on the left yields an estimate of 
ϕ1̂ = 0.16 with a standard error of 0.10. The swapped series on the right yields an estimate of ϕ1̂ =
0.56 and a standard error of 0.08. Figure 1 shows the series on the right is more representative 
than the noised version, but in both cases, the time series features (e.g., AR (1) parameter, variance, 
spike, maximum variance shift, spectral entropy, etc.) are different from those of the middle series. 
However, it is not immediately clear how these differences affect forecast accuracy.   
 
The proposed method in this paper improves the series on the right by swapping time series values 
with each other only if their underlying features are likely to maintain forecast accuracy.  The k-
nTS+ swapping method is illustrated in Figure 2 and begins by generating protected data using 
baseline privacy methods (e.g., additive noise, differential privacy) commonly used in practice (Step 
1).  Then, the method generates forecasts for the original and protected series (Step 2) and 
compares their accuracies (Step 3). To improve forecast accuracy (blue arrows in Figure 2) of the 
protected data, k-nTS+ swapping uses a machine learning-based feedback loop with RReliefF 
(Robnik-Sikonja & Kononenko, 2003) and Recursive Feature Elimination (RFE) (Gregorutti et al., 
2017) on the accuracy results to select (RReliefF) and rank (RFE) the time series features most 
predictive of forecast accuracy (Step 4).  For privacy protection, it computes a feature-based 
distance matrix to randomly choose a time series to swap values with (Step 5).  As a result, the k-
nTS+ swapping method produces protected time series that are more likely to preserve useful time 
series features for forecasting. 
 
 
 



Figure 2: k-nTS+ swapping method (Blue arrows indicate the feedback loop which informs 
the swapping). 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Results based on M3 competition data show that our method provides significantly better forecast 
accuracy (+13.9% worse than the original forecasts) at similar levels of privacy to baseline privacy 
methods. Furthermore, using the performance gap from Petropoulos & Siemsen (2022), we show 
that k-nTS+ protected time series are more representative of the original series, leading to 
improved trust between data owners and forecasters.  
 
In Section 2, we review the relevant literature. Section 3 describes the k-nTS swapping method and 
proposes the k-nTS+ swapping method with a feedback loop of the time series features. Section 4 
presents the empirical application and Section 5 concludes. 
 
 
2. Literature Review 
 

2.1. Privacy Methods 
 
In a decentralized scenario, Goncalves et al. (2021c) modeled a data market where data owners are 
compensated for sharing their time series data and purchase only forecasts based on the data from 
other parties. However, the original time series were still shared with a central party which 
discourages data owners from sharing time series due to privacy concerns such as a data breach. 
Other privacy-preserving solutions for collaborative forecasting include secure multi-party 
computation, decomposition-based methods, and data transformation techniques (see Gonçalves et 
al. 2021a).  
 



In a centralized scenario, the data owner uses privacy methods to generate protected data sets for 
forecasting. Gonçalves et al. (2021a) showed that differential privacy reduces the forecast accuracy 
of VAR models under very high values of the privacy parameter ϵ (weak privacy protection). Others 
have also studied the application of differential privacy to time series (Imtiaz et al., 2020; Liyue Fan 
& Li Xiong, 2014). Luo et al. (2018) simulated data integrity attacks and found that multiplicative 
noise reduces forecast accuracy by over 21% when only half the data points are altered. Their 
results likely understate the reduction in forecast accuracy from privacy methods because only half 
the data points were altered. 
 
Other privacy methods include generalization where the structure of the original data set is 
changed.  Data records can be aggregated or combined to make every record (or time series) 
identical to at least 𝑘 –  1 other records (or time series).  For example, daily time series data can be 
aggregated to weekly time series data (frequency aggregation), or each time series can be averaged 
with its most similar time series (𝑘 = 2 anonymity).  Using 𝑘 = 2 anonymity (weak privacy), Nin & 
Torra (2009) evaluated the change in forecast accuracy for simple exponential smoothing, double 
exponential smoothing, linear regression, multiple linear regression, and polynomial regression. 
They found an overall reduction in forecast accuracy but did not provide the accuracy of each 
model individually.  Also, top- and bottom-coding can be used to replace the tails of distributions 
with a threshold value, such as $150,000 for income or 10 kilowatts-hours for household energy 
usage).  Top- and bottom-coding limit attribute disclosure risk (i.e., preventing knowledge of 
specific values within a time series), but may not be effective at limiting identification disclosure 
risk (i.e., preventing the identification of an entire time series). Top- and bottom-coding could have 
an effect similar to adjusting for outliers which improves forecast accuracy when the outliers are 
close to the forecast origin (Chen & Liu, 1993).  
 

2.2. Adjusted Forecasts 
 
Privacy methods adjust forecasts by altering the original time series data.  Similar to judgmental 
adjustments, this presents the forecaster with multiple forecasts to choose from.  We reference the 
long history on judgmental forecasting (Petropoulos et al., 2022, see sections 2.11.2 and 3.7.3) 
investigating how the direction and magnitude of adjustments, and the volatility of forecasts affect 
forecast accuracy. 
 
There are two critical differences between privacy adjustments and judgmental adjustments.   
First, judgmental adjustments alter a forecast after it is output from a forecasting model. The 
underlying time series and their features are not changed.  For the direction of the adjustment, 
Davydenko & Fildes (2013) found that both positive and negative adjustments can improve 
accuracy, but positive adjustments tend to give only a marginal improvement. Khosrowabadi et al. 
(2022) similarly found that beneficial positive adjustments tended to be small, and beneficial 
negative adjustments tended to be large. Fildes et al. (2009) showed that negative adjustments 
reduce forecast bias, whereas positive adjustments maintain bias or exacerbate it. The magnitude of 
judgmental adjustments is also positively associated with the size of accuracy improvements when 
adjustments are based on reliable information. For volatility, accuracy improvements are greater 
for time series that have forecast errors with low volatility, presumably because adjusters struggle 
to assess the effect of future events accurately when a time series is more volatile (Fildes et al., 
2009).  
 
Second, the motivation for judgmental adjustments is different. Motivations include gaining control 
of the forecasting process, incorporating practitioner expectations, and compensating for 
judgmental biases (Petropoulos et al., 2022, sec. 3.7.3). The goal is to incorporate the intuition and 



experience of the adjuster, knowledge of special events, or insider or confidential information to 
improve forecast accuracy (Fildes et al., 2019).  Despite varying motivations, judgmental 
adjustments have been shown to improve forecast accuracy by 5-10% on average (Davydenko & 
Fildes, 2013; Khosrowabadi et al., 2022). For privacy adjustments, the goal is to improve privacy by 
blurring the data. The assumption is that forecast accuracy will not improve – instead, utility 
(forecast accuracy) will tradeoff with privacy (Duncan & Stokes, 2004). 
 

2.3. Time Series Features for Forecast Accuracy 
 
Thousands of features have been used for time series classification (Fulcher & Jones, 2014) and a 
subset of those are useful for forecast accuracy. Bandara et al. (2018) clustered similar time series 
based on eighteen interpretable features, including the mean, variance, and strength of seasonality 
to improve the accuracy of RNNs between 2 and 11%.  The initial results from the M4 competition 
suggested that the randomness and linearity of time series were the most important determinants 
of forecast accuracy and that seasonal time series (typically less noisy) are easier to forecast 
(Makridakis et al., 2018). In a follow-up study, Spiliotis et al. (2020) used multiple linear regression 
to confirm the importance of randomness, linearity, and seasonal strength in predicting mean 
absolute scaled error (MASE) values of the ETS, ARIMA, Theta, and Naïve 2 (random walk applied to 
seasonally adjusted data) models from the M4 competition. They found that increasing the 
frequency, kurtosis, linearity, and seasonal strength of time series improved forecast accuracy, but 
increasing skewness, self-similarity, and randomness degraded forecast accuracy.  
 
Time series features are also used for model selection and forecast combination. Qi et al. (2022) 
found that forecasts using the strength of trend and seasonality for exponential smoothing model 
selection had lower errors across multiple forecast accuracy metrics than information-based 
selection methods for the majority of forecast horizons. Talagala et al. (2022) applied a meta-
learning algorithm based on Bayesian multivariate surface regression to 37 features, including 
spectral entropy and the Hurst exponent, to predict the model combination that would yield the 
minimum forecast error for the M4 competition data. This approach achieved forecast accuracy on 
par with the top M4 competition methods with less computational cost. Li et al. (2022) used 
features such as the first ACF value to propose an interpretable Bayesian forecast combination 
framework with time-varying weights. In experiments using the M3 competition data, this method 
reduced the MASE by approximately 1.1% relative to the next-best forecast combination method. 
Petropoulos & Siemsen (2022) created a representativeness metric that selects models with trend 
and seasonality components when the respective signals of these components are strong. For most 
data frequencies, their approach lowered MASE on the M, M3, and M4 competition data and 
selected the best forecasting model approximately 3% more often than the other selection methods. 
 
 
3. The k-nearest Time Series (k-nTS) Swapping Method 
 
We solve the data protection problem for the data owner using a matrix-based k-nTS (k-nearest 
time series) swapping method, where the data owner releases a set of protected time series 𝕏′ =

{𝑥1
′ , … , 𝑥𝐽

′} where 𝑥𝑗
′ = (𝑃𝑗,1, … , 𝑃𝑗,𝑡)

𝑇
 is based on 𝕏 = {𝑥1, … , 𝑥𝐽}, the original values of all series 

through time 𝑡. To create a protected series 𝑥𝑗
′, the k-nTS swapping method finds the k most similar 

time series to 𝑥𝑗 where similarity is based on the time series features. For each period t, it randomly 

chooses one of the k similar series to 𝑥𝑗 and replaces 𝐴𝑗,𝑡 with the original value at time t from the 

randomly chosen series. 
 



Depending on the quantity of available data, k-nTS swapping can use rolling windows of data that 
adjust for dynamic changes in time series features. For example, if we choose a rolling window of 

size n, then 𝑥𝑗 = (𝐴𝑗,𝑡−𝑛+1, 𝐴𝑗,𝑡−𝑛+2, … , 𝐴𝑗,𝑡−1, 𝐴𝑗,𝑡)
𝑇

 where 𝑥𝑗 ∈ ℝ𝑛. Protection in subsequent 

periods from 𝑡 +  1 to 𝑇 rolls 𝑥𝑗 forward by one time period. We label the time series features for 

the current window as 𝑓𝑗,𝑡 which we refer to as the feature vector for time series j in time period t 

based on the n values in 𝑥𝑗. For simplicity, we omit the t subscript for the feature vectors and write 

𝑓𝑗. 

 
For each time series 𝑥𝑗 ∈ ℝ𝑛, the data owner computes the feature vector 𝑓𝑗 ∈ ℝ𝑚. This vector can 

contain any single-valued feature calculated from the values in 𝑥𝑗, such as the strength of the trend 

and seasonality, the spectral entropy, or the mean value of the current window. Let ℂ = {𝑓1, … , 𝑓𝐽} 

be the set of m-vectors containing the features from each of the J time series windows. For each 𝑓𝑗, 

the data owner computes a set of squared distances of the elements of ℂ. We define 𝑑𝑖𝑠𝑡(𝑓𝑗, 𝑓𝑖) =

𝑑𝑗,𝑖 as the distance between 𝑓𝑗 and 𝑓𝑖, i.e., the feature vectors corresponding to two distinct time 

series from 𝕏. Without loss of generality, we use the Euclidean norm, or ℓ2-norm, as a distance 
metric4. Since our case is multivariate and partially ordered, we can get a totally ordered set based 
on the Euclidean distance. 
 

We define 𝑥𝑗
(𝑘)

 as the kth nearest neighbor of 𝑥𝑗, with the corresponding feature vector 𝑓𝑗
(𝑘)

. Then, 

for a time series 𝑥𝑗, we have {𝑑𝑗,(1), 𝑑𝑗,(2), … , 𝑑𝑗,(𝐽−1)} such that 𝑑𝑗,(𝑘) ≤ 𝑑𝑗,(𝑙) for any integers 𝑘 <  𝑙 

where 𝑑𝑗,(𝑘) = ‖𝑓𝑗 − 𝑓𝑗
(𝑘)

‖. Note that 𝑥𝑗
(𝑖)

∈ 𝕏\{𝑥𝑗} and the superscript (𝑖) means the ith order 

statistic of the related Euclidean distances of all 𝑓𝑗
(𝑖)

∈ ℂ\{𝑓𝑗} from 𝑓𝑗. Thus, for a given time series 

vector 𝑥𝑗, its k-nearest time series can be represented as the set 𝐾𝑗 = {𝑥𝑗
(1)

, … , 𝑥𝑗
(𝑘)

} based on an 

ordered set {𝑑𝑗,(1), 𝑑𝑗,(2), … , 𝑑𝑗,(𝑘)}.  

 
For more efficient computation, we introduce a symmetric distance matrix 𝐷 containing the 
squared distances between time series feature vectors. The squared distance between 𝑓𝑖 and 𝑓𝑗 is 

given by 𝑑𝑖,𝑗  , that is the (i, j)th entry of 𝐷 (also note that rank(𝐷) ≤ 𝑚 + 2). Suppose we have an 

original data matrix 𝑋 = [𝑥1, 𝑥2, … , 𝑥𝐽], where 𝑥𝑗 ∈ ℝ𝑛 (i.e., 𝑋 ∈ ℝ𝑛×𝐽). We calculate the desired 

features based on each 𝑥𝑗 and construct a feature matrix 𝐶 (where 𝐶 ∈ ℝ𝑚×𝐽) as follows: 

 
 
 
 
 (1) 
 
 
 
 
 
 
 
 
 

 
4 All norms on ℝ𝑛 are equivalent to the Euclidean norm. 



Algorithm 1: The k-nTS Swapping Method 
 
Require [Initialization]:  
  

 𝑋 = [𝑥1, … 𝑥𝐽]: the 𝑛 × 𝐽 matrix of original time series. 

𝐶 = [𝑓1, … , 𝑓𝐽]: the 𝑚 × 𝐽 matrix of time series features. 

𝐷 = 𝟏𝑑𝑖𝑎𝑔(𝐶𝑇𝐶)𝑇 − 2𝐶𝑇𝐶 + 𝑑𝑖𝑎𝑔(𝐶𝑇𝐶)𝟏𝑇: the feature distance matrix. 
 
for 𝒋 =  𝟏, 𝟐, … , 𝑱 do 

i. Find the set 𝐾𝑗 for 𝑥𝑗 by sorting the 𝑗th column of 𝐷 from smallest to largest and finding the 

𝑘th smallest component. 

ii. Replace the last component of 𝑥𝑗 with the last component of 𝑥𝑗
(𝑖)

 for a randomly chosen 𝑖 ∈

{1, … , 𝑘}. 
end for 
 
 

We calculate the matrix 𝐷 using the fact that ‖𝑓𝑖 − 𝑓𝑗‖
2

= (𝑓𝑖 − 𝑓𝑗)
𝑇

(𝑓𝑖 − 𝑓𝑗) = 𝑓𝑖
𝑇𝑓𝑖 − 𝑓𝑖

𝑇𝑓𝑗 − 𝑓𝑗
𝑇𝑓𝑖 +

𝑓𝑗
𝑇𝑓𝑗, which can be written as the following: 

 
𝐷 = 𝟏diag(𝐶𝑇𝐶)𝑇 − 2𝐶𝑇𝐶 + diag(𝐶𝑇𝐶)𝟏𝑇,                             (2) 

 
where 1 denotes a column vector of 𝐽 ones5. It is easy to see that the column vector 𝑑𝑖𝑎𝑔(𝐶𝑇𝐶) =

(‖𝑓1‖2, … , ‖𝑓𝐽‖
2

)
𝑇

. Let 𝑑𝑗 denote the jth column of 𝐷. Then we can write the 𝐽 × 𝐽 distance matrix 

𝐷 = [𝑑1, … , 𝑑𝐽], where 𝑑𝑗 ∈ ℝ𝐽. In the general case where 𝑘 ≪  𝐽, for each time series 𝑥𝑗 we sort 𝑑𝑗 

and take the k smallest components so that we have  
 

𝐾𝑗 = {𝑥𝑗
(1)

, … , 𝑥𝑗
(𝑘)

}.    (3) 

 
That is, the data owner selects a value of k from 1 to a maximum of 𝐽 − 1 and selects the k-nearest 

time series to 𝑥𝑗 based on the m features. Let the ith most similar time series to 𝑥𝑗 be 𝑥𝑗
(𝑖)

. Swapping 

the last component of 𝑥𝑗 with the last component of one of its k-nearest time series 𝑥𝑗
(𝑖)

, 𝑖 = 1, … , 𝑘, 

is:  
 

𝑃𝑗,𝑡 =  𝐴𝑗,𝑡
(𝑖)

 with probability 1/𝑘 for 𝑖 = 1, … , 𝑘.  (4) 

 
By Algorithm 1, we can obtain 𝑋′, a matrix of protected time series data through time t for all J time 
series. All of the first 𝑛 values of each time series are swapped based on the k-nearest time series to 
the first rolling window. For each successive time period, the window is rolled forward, the k-
nearest neighbors are re-calculated, and swapping is performed on a rolling basis. The output of the 
k-nTS swapping method can be written as the following protected data matrix, 
 
 
 

 
5 Note that we could also define a distance matrix based on the actual time series values 𝑥𝑗, where 

𝐷 would become a function of 𝑋 rather than 𝐶. 



 
 
 
  

(5) 
 
 
 
 
 

3.1. The k-nearest Time Series + (k-nTS+) Swapping Method 
 
The k-nTS+ swapping method adds a feature selection process to k-nTS swapping which selects 
features that are good predictors of forecast accuracy. The goal is to obtain a small set of features 
that predict forecast accuracy well.  k-nTS+ swapping can be used collaboratively between a data 
owner and the forecaster. The forecaster specifies their preferred forecasting model ℱ, and the data 
owner applies the model to the original and protected data up through time period T – 1, assesses 
which features are most predictive of accuracy for the specified model, and releases protected data 
to the forecaster using k-nTS+ based on these features up through time period 𝑇.  The data owner 
can repeat this process over successive time periods for multiple data releases at times 𝑇 + 1 and 
beyond. Algorithm 2 specifies the k-nTS+ swapping method below. A version of Algorithm 2 with 
more mathematical detail can be found in the Appendix. 
Algorithm 2: The k-nTS+ Swapping Method 
 
Require [Initialization]: 
 

 𝑋 = [𝑥1, … 𝑥𝐽]: the 𝑇 × 𝐽 matrix of original time series. 

𝑃 = {𝒫1, … , 𝒫𝐵}: the 𝐵 baseline privacy methods. 
 ℱ: the desired forecasting model. 
 ℳ = {𝑚1, … 𝑚𝑁}: the initial set of time series features’ names. 
 𝒦: the number of nearest neighbor time series to consider for RReliefF. 
 𝑁𝑟𝑓𝑒: the number of recursive feature elimination iterations 

 τ∗: recursive feature elimination prediction error threshold 
𝑘: the number of nearest neighbor time series to consider for swapping. 

 
Step 1: Create Baseline Protected Datasets 
 

Use baseline privacy methods 𝑃 to create protected data sets through time 𝑇 –  1 
 
Step 2: Generate Baseline Forecasts 
 

Generate forecasts using ℱ for time 𝑇 for the original and baseline protected data sets 
 
Step 3: Measure Forecast Accuracy 
 

Compute the accuracy of forecasts at the series level for the original and protected data sets 
 
Step 4: Compute and Select Time Series Features 
 



i. Compute time series features ℳ for the original and protected data sets through time 𝑇 –  1 
ii. Use RReliefF (Robnik-Sikonja & Kononenko, 2003) with nearest-neighbor parameter 𝒦 to 

weight the ability of features to discriminate between series with different forecast 
accuracies 

iii. Drop features with RReliefF weights 𝑊𝑛 ≤ 0 
iv. for 𝒊𝒕𝒆𝒓 =  𝟏, … 𝑁𝑟𝑓𝑒  do [use RFE to select most important features] 

a. Train a random forest to predict forecast accuracy using the features from RReliefF 
b. Drop the least important feature 
c. Repeat (a.) and (b.) until one feature remains 

end for 
v. Rank the RReliefF features from least to most important using the average order of 

elimination across the 𝑁𝑟𝑓𝑒  iterations of RFE 

vi. Select the minimum number of features required in the random forest model to attain 
prediction accuracy within τ∗% of the random forest model with the best predictive 
accuracy 

 
Step 5: Create Protected Data Set using k-nTS+ Swapping 
 

Use input k and the features selected in Step 4 to perform swapping through time T using 
Algorithm 1: The k-nTS Swapping Method. 

 
Output: k-nTS+ protected time series data set 𝑋′. 
 
4. Empirical Application 
 

4.1. Data 
 
The organizers of the early M competitions did not disclose the true identity of the time series used 
in their competitions (Makridakis & Hibon, 2000).  For our application, this provides a natural 
connection to privacy because we can compute the identification disclosure risk of each protected 
time series. We define identification disclosure risk as the probability of matching a protected time 
series to its original time series in the original data set.  Good privacy implies the identification 
disclosure risk is low or similar to random guessing.  To be conservative, we assume that an 
adversary (possibly a forecaster) has external data on at least one original time series and attempts 
to match it to the protected time series. The data owner seeks to alter the time series with privacy 
methods to reduce the identification disclosure risk while maintaining as much forecast accuracy as 
possible. 
 
Recent work by Spiliotis et al. (2020) shows that the M3 competition data contain time series 
features representative of the real world data which also makes it suitable for our feature-based k-
nTS+ swapping method. As a result, we use the monthly micro dataset from the M3 competition, 
which includes 474 strictly positive time series with values ranging from 120 to 18,100. Of the 474 
series, 18 consist of 67 time periods, 259 consist of 68 time periods, and 197 consist of 125 time 
periods.  The data owner protects every single time series value from time period 1 to T.  The 
protected time series are given to forecasters to produce one-step ahead forecasts for time T + 1.  
The data owner then measures forecast accuracy using the protected and original data against the 
actual values from T + 1.  
 
We assume the forecaster may be an adversary attempting to identify an original time series by 
using the protected time series.  For calculating identification disclosure risk (see subsection 4.3.4 



for further details), we take the most conservative approach and assume that the adversary knows 
the length of each original series which makes identification easier.  Thus, we separate the privacy 
analysis and protection into three groups of 18, 259, and 197 time series.  Random guessing 

averages out to approximately 0.6% (
1

18
 for the 18 series, 

1

259
 for the 259 series, and 

1

197
 for the 197 

series). 
 
The rest of the empirical application is outlined as follows. Subsection 4.2 defines the time series 
features used for the k-nTS+ swapping method, subsection 4.3 describes the privacy methods and 
defines the identification disclosure risk, subsection 4.4 presents the privacy and forecast accuracy 
results, and subsection 4.5 analyzes how the time series features change after privacy protection.  
Subsection 4.5 also analyzes whether the volatility of the original time series and magnitude or 
direction of privacy adjustments maintained forecast accuracy. 
 

4.2. Time Series Features for Forecast Accuracy 
 
Table 1 displays the time series features selected for k-nTS and k-nTS+ swapping.  For k-nTS 
swapping, we selected time series features that had a relationship with forecast accuracy based on 
the literature review in Section 2.3. We omit stability and non-linearity since these features had 
little to no effect on accuracy. We also omit frequency because none of the privacy methods we 
consider change the frequency (monthly) of the original data. For k-nTS+, we include many 
additional features from the tsfeatures package in R including Spike, Max Variance Shift, and Max 
Level Shift. We refer the reader to Hyndman et al. (2022) for a detailed explanation of these features 
and further mathematical detail on the time series features is provided in the Appendix. 
 
 
Table 1: Time series feature descriptions and value ranges. 

Feature Description Value Range Selected 
(Literature) 

Selected6 
(k-nTS+) 

Spectral Entropy Signal-to-noise ratio of the 
time series. 

[0, 1] X  

Hurst Long-range dependence 
(self-similarity) of a time 
series. 

[0, 1] X  

Skewness Symmetry of the 
distribution of time series 
values. 

(−∞, ∞) X  

Kurtosis Weight of the tails of the 
distribution of time series 
values. 

(−∞, ∞) X  

Error ACF First autocorrelation 
coefficient of the error 
component of the 
decomposed series. 

[-1, 1] X  

Trend Strength of the trend. [0, 1] X X 
Seasonality Strength of the seasonality. [0, 1] X  
Mean Mean of the time series. [0, ∞) X X 
Variance Variance of the time series. [0, ∞) X X 

 
6 These features were selected from the results in Section 4.4. 



Spike Variance of the leave-one-
out variances of the 
remainder component of the 
decomposed series. 

[0, ∞)  X 

Max Variance Shift Largest variance shift 
between two consecutive 
sliding windows. 

[0, ∞)  X 

Max Level Shift Largest mean shift between 
two consecutive sliding 
windows. 

[0, ∞)  X 

 
 
4.3. Privacy Protection 

 
4.3.1.  Differential Privacy 

 
We follow the interpretation and implementation of differential privacy from Gonçalves et al. 
(2021a). A mechanism 𝑀 satisfies ϵ-differential privacy by guaranteeing that, for every output 𝑥′ of 
𝑀 and every pair of series 𝑥𝑗 and 𝑥𝑖 which differ on at most one observation, 

 
 𝑃𝑟(𝑀(𝑥𝑗) = 𝑥′) ≤ 𝑒𝑥𝑝(ϵ)𝑃𝑟(𝑀(𝑥𝑖) = 𝑥′). (6) 

 
A differentially private time series can be created using a randomized mechanism 𝑀(𝑥𝑗) = 𝑥𝑗 +  η 

that adds a vector of random noise values, each of which is drawn from a Laplace distribution with 
scale parameter Δ𝑓1/ϵ, to an original time series 𝑥𝑗.  The sensitivity Δ𝑓1 is determined as the 

maximum absolute difference between two time series 𝑥𝑗 and 𝑥𝑖 , which differ in at most one 

observation, where Δ𝑓1 = 𝑚𝑎𝑥‖𝑥𝑖 − 𝑥𝑗‖
1

. We use the values of 𝜀 = 20.0, 10.0, 4.6, 1.0, 0.1 which 

ranges from least private to most private. 
 

4.3.2.  Additive Noise 
 

Additive noise adds a normally distributed random number with mean zero and standard deviation 
σ to each value in an original time series 𝑥. Protected values can be written 𝑃𝑡 = 𝐴𝑡 + 𝑟, where 
𝑟~𝑁(0, σ2) and σ = 𝑠 ∗ σxj

. The protection parameter 𝑠 denotes the number of standard deviations 

of 𝑥𝑗 and we set 𝑠 = 0.25, 0.50, 1.0, 1.5, 2.0 which ranges from least private to most private. 

 
4.3.3.  k-nTS and k-nTS+ 

 
The k-nearest series for k-nTS and k-nTS+ swapping are determined using features computed by 
the data owner from the original data set.   The data owner swaps original values to create the 
protected values from time 1 to T for each time series.  We use the features described in Section 4.2.  
 
To perform feature selection for k-nTS+, the data owner first creates protected versions of the 
original data using additive noise and differential privacy from time period 1 to 𝑇 − 1.  Then, using 
this protected data from time period 1 to 𝑇 − 1, the data owner generates forecasts for each of the 
protected data sets at time 𝑇 and computes the absolute error of each forecast for each series. The 
k-nTS+ swapping method is applied to each forecasting model separately in order to detect the 



variation in forecast accuracy due to changes in time series features (and not the forecasting 
model).  
 
We select τ =  5% so the features are within 5% of the minimum average prediction error from the 
best random forest model. For the k-nTS+ protected data, we use the six features (last column of 
Table 1) with the highest average rank across the RFE iterations for all forecasting models with 𝑘 =
3, 5, 7, 10, 15. Next, the data owner uses these six features selected by this feedback to swap all 
series for time periods 1 to T.  The data owner shares this protected data with forecasters who 
forecast time period 𝑇 + 1. 
 

4.3.4. Identification disclosure risk 
 
As previously mentioned, the forecasters of the M3 competition did not know the identities of the 
original time series. For our privacy metric, we assess the ability of each privacy method to protect 
against identification disclosure, which occurs when an adversary correctly predicts the identity of a 
protected time series. Each protected data set consists of the protected series along with a pseudo 

identifier, i.e., 𝑋 = [(𝑃𝐼𝐷1, 𝑥1), (𝑃𝐼𝐷2, 𝑥2), … (𝑃𝐼𝐷𝐽, 𝑥𝐽)]
𝑇

. The pseudo identifier in our application is 

the `Series` column from the original M3 data, which contains a PID for each time series, e.g., 
`N1402`. Identification disclosure occurs if an adversary (or forecaster) correctly predicts the 
identity of one or more of the time series in the M3 data set based on the protected time series and 
some outside information the adversary possesses. For example, identification disclosure occurs 
when an adversary correctly states, "Series N1402 comes from the monthly sales of the Roseville, 
Minnesota Target store.” 
 
We perform 𝑆 =  20 simulations of a privacy attack in which an adversary uses original time series 
values to identify the protected time series. In each simulation, we sample ten sequential values 
from each original time series and treat these as external information available to the adversary. 
The adversary predicts the identity of each protected series based on which original values are 
closest to the protected values from the same time periods.  
 
The metric we use is identification disclosure risk for time series (Nin & Torra, 2006, 2009), �̅�, the 
average proportion of the 𝐽 time series which are correctly identified across the 𝑆 simulated privacy 
attacks, 
 

�̅� =
1

𝐽×𝑆
∑ ∑ 𝐼(�̂�𝑖

𝑠 = 𝑗∗)
𝐽
𝑖=1

𝑆
𝑠=1      (7) 

 
where �̂�𝑖

𝑠 is the adversary’s prediction of the identity of the 𝑖th protected time series. We use 𝐼(∗) 
to denote the indicator function which is equal to one when identification disclosure occurs, i.e., 
when the predicted identity is equal to the true identity 𝑗∗. We refer the reader to the Appendix for 
added mathematical details. 
 

4.4. Results 
 
For all privacy methods, we generate one-step ahead forecasts for time T+1 using off-the-shelf 
models in R and Python shown in Table 2.  Similar to the M3 Competition, all reported forecast 
accuracy and standard deviation results are derived from comparing the forecasts for T + 1 to the 
actual data from T + 1. Reported privacy results are derived from calculating the identification 
disclosure risk using the protected data from time period 1 to T.  Also, the LGBM and RNN 



forecasting models and the VAR model are trained separately on the three subsets of 18, 259, and 
197 time series. We perform minimal data pre-processing and use the standard settings in the off-
the-shelf packages. 7  
 
Table 2: Univariate and Multivariate Forecast Models 

Model Name Variant 
SES - 
DES Additive trend 
TES Additive trend/seasonality 
Auto-ARIMA Seasonal 
VAR - 
LGBM - 
RNN LSTM 

 
 

Table 3 displays the average MAE of one-step ahead point forecasts across all models and series, 
the identification disclosure metric �̅�, and the average performance gap across all series. The 
percentages in parentheses are the increase in average MAE relative to the average MAE from the 
original data. The results show an inverse relationship between forecast accuracy and the strength 
of privacy protection. While strong differential privacy provides the lowest identification disclosure 
risk at 1.85% (random guessing is 0.6%), it nearly quintuples (+383%) the average forecast error 
relative to the original data resulting in unusable forecasts. Under weak differential privacy with 
ϵ =  10, over 49% of series are identified correctly on average, which is poor identification 
disclosure risk.  Protection against identification disclosure is better under additive noise with 𝑠 =
 1 where 22.5% of series are correctly identified on average. However, this comes at a cost to 
forecast accuracy, which degrades by nearly 45%.8  
 
 
 
 
 
 
 
 
 
 

 
7 Implementation details can be found in the appendix. 
 
8 The averages for additive noise and differential privacy excludes the VAR model error for AN (s = 
1) and DP (ϵ =  0.1) since the errors were over 1000% larger than the error of any other model. 
Due to the large noise infused from these privacy methods, the VAR could not fit small enough 
coefficients to smooth out the noise, resulting in extremely poor forecast accuracy. For example, the 
magnitude of the first lag coefficient for an AN (s = 1) protected time series increased from -0.372 in 
the original data to -0.679 in the protected data. This coefficient was multiplied by an extreme 
outlier at time 𝑇 causing the forecast at time 𝑇 +  1 to explode and skew the overall average 
forecast error. This problem did not occur for the other forecasting models, which did a better job 
smoothing out the random noise. 
 



Table 3: Identification disclosure risk, forecast accuracy, and representativeness for original 
and protected data sets. 

 
 
 
k-nTS swapping with k = 3 offers a good identification disclosure risk of 2.1%, but forecast accuracy 
degrades by 39.6%. Our proposed method of k-nTS+ swapping with 𝑘 =  3 provides similar levels 
of protection against reidentification (3.3%) with a reduction in forecast accuracy of only 13.9%. 
Part of this improvement in forecast accuracy at a minimal tradeoff to identification disclosure risk 
is due to the incorporation of the accuracy feedback loop for selecting time series features.  Thus, 
we recommend data owners to use our k-nTS+ swapping method (k=3) with the selected time 
series features to balance the tradeoff between privacy and forecast accuracy.  
 
Forecasters also prefer protected data that are representative of the original time series. 
Representativeness improves trust between data owners and forecasters and makes it more likely 
for forecasters to use protected data.  Table 3 displays the performance gap of Petropoulos & 

Privacy 
Method 

Parameter 
Value 

Privacy 
(Identification 
Disclosure Risk) 

Accuracy 
(MAE) 

Representativeness 
(Performance Gap) 

Original 
Data 

- 100.0% 685.71 
(0.0%) 

42.7 

k-nTS+ 15 2.7% 839.8 
(+22.5%) 

73.0 

7 3.5% 822.3 
(+19.9%) 

66.5 

3 3.3% 781.0 
(+13.9%) 

62.1 

k-nTS 15 1.6% 1066.2 
(+55.5%) 

106.3 
 

7 2.1% 987.0 
(+43.9%) 

100.4 

3 2.1% 956.9 
(+39.6%) 

92.9 

Differential 
Privacy 

1.0 1.9% 3310.3 
(+382.8%) 

1,826,437.0 

4.6 13.6% 1401.0 
(+104.3%) 

311,037.7 

10 49.0% 899.4 
(+31.2%) 

78,456.4 

Additive 
Noise 

 

2.0 5.8% 1821.4 
(+165.6%) 

503,658.2 

1.5 10.4% 1343.3 
(+95.9%) 

326,834.5 

1.0 22.5% 994.0 
(+45.0%) 

166,171.2 



Siemsen (2022) to measure the distance between the protected and original time series values, 
performance gap =  ‖𝑥𝑗 − 𝑥𝑗

, ‖
1

, which is calculated after applying a Box-Cox transformation and 

scaling the original and protected series. Note that our results in Table 3 differ from Petropoulos & 
Siemsen (2022) where the performance gap is calculated using the fitted values of forecasting 
models relative to the training data (which we include in the first row of Table 3). The results show 
that k-nTS and k-nTS+ swapping produce protected time series with the smallest performance gaps 
by a large margin. However, we note that the average performance gap across series (62.1 for k-
nTS+ with k=3) is significantly larger than the average performance gap (42.7) of the fitted values 
across all series and forecasting models.   
 
Table 4 displays the ranks of the MAE and forecast error variance across all forecasting models 
using the original data and k-nTS+ swapping with 𝑘 = 3. Past research found that complex 
forecasting models forecast more accurately than simple models using the monthly micro data 
(Koning et al., 2005).  The results show that k-nTS+ swapping preserves the ranking of the best and 
worst models on MAE.  Univariate models (SES and DES) moved up in the ranking and more 
complex models (Auto-ARIMA and RNN) moved down. 
 
Table 4: Ranks of MAE and standard deviation of forecast error for the original data and the 
k-nTS+ swapping (k=3) data.  

 MAE Ranks Standard Deviation of Forecast Error Ranks 
Model Original Protected Original Protected 
TES 1 (637.90) 1 (731.30) 2 (859.30) 4 (920.57) 
Auto-ARIMA 2 (646.07) 4 (764.83) 1 (834.78) 1 (897.67) 
RNN 3 (665.38) 5 (783.15) 5 (883.86) 5 (966.35) 
DES 4 (680.54) 2 (743.68) 3 (866.35) 2 (901.22) 
SES 5 (686.71) 3 (752.08) 4 (867.13) 3 (914.20) 
LGBM 6 (709.48) 6 (809.00) 7 (919.67) 6 (982.35) 
VAR 7 (773.90) 7 (883.07) 6 (892.62) 7 (998.08) 

 
 
 

4.5. Analysis of Time Series Features 
 

4.5.1.  Importance of Time Series Features 
 
Let 𝑓𝑗

𝜅 denote one of the 𝒦 nearest neighbor feature vectors to 𝑓𝑗, where 𝒦 is the number of 

nearest neighbors considered by RReliefF, and let ϵ𝑗
κ and ϵj denote the forecast errors for the 

corresponding time series. Let πϵ and π𝑚 denote the events that series 𝑥𝑗 and 𝑥𝑗
κ have different 

forecast errors and different values for feature 𝑚, respectively, conditional on being nearest 
neighbors. The RReliefF weight for feature 𝑚 approximates the difference in conditional 
probabilities,  
 

 𝑊𝑚 = 𝑝(π𝑚|πϵ) − 𝑝(π𝑚|πϵ
𝑐).  (8) 

 
The RReliefF weights approximate the difference between the probability that feature 𝑚 
discriminates between series with different forecast errors, and the probability that feature 𝑚 
discriminates between series with the same forecast error. Features with 𝑊𝑚  >  0 have a higher 
probability of varying across series with different forecast errors than varying across series with 



similar forecast errors. If we swap using features with 𝑊𝑚 > 0, we will maintain the values of these 
features throughout the swapping process and maintain forecast accuracy.  
 
Figure 3 shows the RReliefF weights for each of the 39 features averaged across all forecasting 
models.  RReliefF was used to predict the absolute forecast errors for each model and series across 
the original and protected data sets.  Surprisingly, Hurst and Spectral Entropy had negative weights 
which implied they were not useful to maintain forecast accuracy for swapping in the protected 
data.  On the other hand, Spike, Variance, Linearity, Max Level Shift, Max Variance Shift, and 
Curvature had large positive weights and were important to maintain forecast accuracy. 
 
Figure 3: RReliefF weights averaged across the results of each forecasting model. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

4.5.2.  Selection of Time Series Features 
 
Figure 4 presents the number of features included for each forecasting model after k-nTS+ 
eliminated features with negative weights that were poor predictors of forecast error. Over 50 
iterations, most of the reduction in OOB MSE occurred using five or fewer features for all 
forecasting models. 
 



Fig. 4: Average OOB MSE across feature subset sizes when predicting the MAE of each 
forecasting model. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5 summarizes the results of RFE in Figure 4 and displays the permutation-based importance 
values for each forecasting model's six most highly ranked features. Some features, such as spike, 
max variance shift, max level shift, mean, and variance are highly ranked across most or all 
forecasting models. Other features appear to be highly important only for specific forecasting 
models. Examples include trend, which is required for DES and TES, seasonal strength, which is 
required for TES, and X ACF (the first autocorrelation coefficient of the time series), which is 
important for Auto-ARIMA and RNN. 
 
 
 
 
 
 
 
 
 



Figure 5: Permutation-based importance for the top six features for each forecasting model. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

4.5.3.  Illustration of Changes in Time Series Features After Protection 
 
Figure 6 displays two monthly time series from the M3 monthly micro data with desirable and 
undesirable features.  After applying the privacy methods to the original time series, Figure 6 
illustrates the results using k-nTS+ with 𝑘 = 3 and additive noise with 𝑠 = 1.  We can see that for k-
nTS+ with k=3, there is little visual change for the undesirable series.  For additive noise, there are 
drastic changes to both series.   
 
Table 5 displays the values of the time series features before and after protection. Table 5 shows 
that the low spectral entropy and high Hurst coefficient values of the desirable time series indicate 
good forecastability. Table 5 shows that the undesirable series is essentially a random walk as 
indicated by the 0.50 value of the Hurst coefficient. Furthermore, the undesirable series has a 
spectral entropy of 1 indicating a low signal-to-noise ratio. When comparing the two series, the 
variance of the desirable series is due to a forecastable trend, whereas the variance of the 
undesirable series is due to randomness. The desirable series also has low Kurtosis with a light 
tailed distribution compared to the undesirable series. One interesting finding is that the k-nTS+ 
(k=3) version of the desirable series has a lower Variance than the original series. However, the 
higher (long run) variance of the original series is due to the strong trend. Figure 7 shows the short 



run month-to-month variance of the k-nTS+ protected series is higher than the original series, as 
indicated by the values of Max Variance Shift in Table 5. 
 
Figure 6: Comparison of original, AN (s = 1), and k-nTS+ (k = 3) protected series with 
desirable and undesirable features. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Table 5: Time series feature values from undesirable and desirable time series.  
 

Feature Desirable Time Series (left Fig. 7) Undesirable Time Series (right Fig. 7) 
 Original k-nTS+ (k=3) AN (s=1) Original k-nTS+ (k=3) AN (s=1) 
Spectral Entropy 0.07 0.89 0.92 1.00 0.98 1.00 

Hurst 0.99 0.81 0.76 0.50 0.66 0.50 

Skewness -0.41 -0.18 -2.74 -0.57 -0.71 -1.17 

Kurtosis -1.24 -0.74 6.99 1.16 0.25 -0.37 

Error ACF -0.09 -0.22 -0.20 -0.19 -0.06 -0.21 

Trend 0.97 0.58 0.49 0.12 0.22 0.11 

Seasonality 0.16 0.25 0.39 0.23 0.24 0.13 

Mean 7.96 8.02 7.41 7.01 7.21 5.73 

Variance 0.29 0.19 4.27 0.65 0.76 9.57 



Spike 0.0000 0.0000 0.0037 0.0001 0.0001 0.0268 

Max Variance Shift 0.05 0.24 9.37 1.10 1.12 11.44 

Max Level Shift 0.57 0.51 2.77 0.70 0.84 3.29 

 
 
Figure 7 displays boxplots of the time series feature values before and after protection across all 
time series in our application. Random noise privacy methods (AN and DP) increase the 
randomness and significantly change distributional characteristics of all features except Error ACF, 
leading to poor forecast accuracy. Random noise also produces a negative bias in the means of the 
protected series and significantly increases the variance. On the other hand, the k-nTS swapping 
method increases the spectral entropy but better preserves most feature distributions. The feature 
distributions of k-nTS+ swapping are much closer to the original distributions for those features 
important for forecast accuracy (Spike, Max Variance Shift, Max Level Shift, Mean, Variance, and 
Trend), which led to improved forecast accuracy results.  
 
Fig 7: Distributions of time series features for each privacy method. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



We note that while k-nTS performed swapping based on the values of Spectral Entropy, Hurst, and 
Seasonality, it does not preserve these feature distributions as well as k-nTS+.  One reason could be 
that all three of these features are based on autocorrelation and we found that k-nTS swapping 
degrades Seasonal ACF, X ACF, X ACF10, and X PACF5 more than k-nTS+ (mathematical details and a 
figure can be found in the Appendix).  k-nTS+ did not explicitly swap based on the values of Spectral 
Entropy, Hurst, and Seasonality which demonstrates the importance of the k-nTS+ feedback loop. 
Although Spectral Entropy and Hurst were correlated with forecast accuracy across series, they 
were eliminated in the first stage of the k-nTS+ feature selection process using RReliefF.   
 

4.5.4.  Privacy Adjusted Forecasts 
 
Similar to Fildes et. al. (2009) and Khosrowabadi et al. (2022), we compare the percentage of 
forecast adjustments that improved accuracy across adjustment direction, magnitude, and the 
coefficient of variation of the original time series. We use the adjusted forecasts using the k-nTS+ (k 
= 3) protected data set which was the top performing privacy method in our application. 
 
To compute adjustment magnitude, we normalize the absolute difference between the adjusted and 
original forecasts using the mean of the original series, 
 

𝑀𝑎𝑔𝑛𝑖𝑡𝑢𝑑𝑒𝑗 =
|�̂�𝑗,𝑇+1

𝑜 −�̂�𝑗,𝑇+1
𝑝

|

�̅�𝑗
     (9) 

 
where the 𝑜 and 𝑝 superscripts denote a forecast based using the original and protected data, 
respectively. Using the approach of Khosrowabadi et al. (2022), we bin the magnitudes into high (>
0.75 quantile), low (< 0.25 quantile) and medium (≥ 0.25 quantile and  ≤ 0.75 quantile) intervals. 
 
We also compute the average relative absolute error (AvgRelAE, see Davydenko & Fildes, (2013)) 
to compare the relative accuracy of the adjusted and original forecasts. The AvgRelAE of the 
adjusted forecasts is computed as 
 

𝐴𝑣𝑔𝑅𝑒𝑙𝐴𝐸 =  𝑒𝑥𝑝 [
1

𝐽
 ∑ 𝑙𝑜𝑔 

𝐴𝐸𝑗
𝑝

𝐴𝐸𝑗
𝑜

𝐽
𝑗 = 1 ],   (10) 

 
where 𝐴𝐸𝑗

𝑝
 and 𝐴𝐸𝑗

𝑜 are the absolute forecast error for the protected and original versions of series 

𝑗, respectively.  An 𝐴𝑣𝑔𝑅𝑒𝑙𝐴𝐸 less than one indicates an average improvement in accuracy and an 
𝐴𝑣𝑔𝑅𝑒𝑙𝐴𝐸 greater than one indicates an average reduction in accuracy.9 We remove the forecasts 
with the 5% smallest and 5% largest ratios (𝐴𝐸𝑗

𝑝
/𝐴𝐸𝑗

𝑜) to prevent extreme outliers from affecting 

AvgRelAE (Davydenko & Fildes, 2013). 
 
Using the k-nTS+ (k=3) protected data, we find that less than half (43%) of the adjusted forecasts 
improved forecast accuracy (lower absolute error), which is less than the reported 49.9% of 
judgmentally adjusted forecasts that improved accuracy in Khosrowabadi et al. (2022).  Table 6 
breaks down the results by adjustment magnitude and direction and displays the AvgRelAE and 
percentage of adjusted forecasts that improved accuracy. The results show that most privacy 
adjusted forecasts degraded accuracy and the AvgRelAE is greater than one in five out of six cases.  
Also, our results are contrary to the findings in the judgmental literature which shows that large 

 
9 AvgRelAE can be generalized to accommodate multiple forecasts for each series. See Davydenko & 
Fildes, (2013) for the AvgRelMAE. 



adjustments and negative adjustments improve forecast accuracy.  We find that small privacy 
adjustments improved (47.9% of cases) forecast accuracy more frequently than large privacy 
adjustments (35.6% of cases). Furthermore, positive adjustments improved (44.6% of cases) 
forecast accuracy more than negative adjustments (40.2% of cases).  However, none of these cases 
improved forecast accuracy overall which is expected due to privacy protection. 
 
Table 6: 𝐀𝐯𝐠𝐑𝐞𝐥𝐀𝐄 (and percentage of adjustments that improved accuracy) by magnitude 
and direction. 

  Direction  
  Positive Negative Total 
Magnitude Large  1.35 (40.5%) 1.47 (30.4%) 1.41 (35.6%) 

Medium 1.12 (44.4%) 1.17 (41.9%) 1.14 (43.2%) 
Small 0.99 (49.1%) 1.06 (46.8%) 1.03 (47.9%) 

 Total  1.14 (44.6%) 1.21 (40.2%) 1.17 (42.5%) 
 
One issue with our data is that 73% of the series have negative slopes, which could cause positive 
adjustments to have a dampening effect on forecasts, and negative adjustments to overestimate the 
impact of the trend (Hyndman & Athanasopoulos, 2021). Table 7 displays the AvgRelAE and the 
percentage of adjustments for time series with positive slopes vs. negative slopes.  To measure the 
slope, we calculate the slope coefficient of a simple linear regression that regresses the time series 
values on a continuous time variable.  Our results show that time series with negative slopes and 
negative adjustments (32% of all time series) tended to degrade forecast accuracy the most. 
 
Table 7: 𝐀𝐯𝐠𝐑𝐞𝐥𝐀𝐄 (and the percentage of adjustments that improved accuracy) by slope and 
direction. 

  Direction  
  Positive Negative Total  
Slope Positive 1.13 (42.9%) 1.14 (41.6%) 1.14 (42.2%) 

Negative 1.14 (45.0%) 1.24 (39.6%) 1.18 (42.6%) 
 Total 1.14 (44.6%) 1.21 (40.2%) 1.17 (42.5%) 

 
Table 8 measures the percentage of adjustments that improved accuracy and AvgRelAE categorized 
by the coefficient of variation of the original series and whether k-nTS+ (k=3) swapping increased, 
decreased, or maintained (within five percent) the coefficient of variation. We measure the 
coefficient of variation using the original time series values since there was only one forecast 
horizon. We bin the coefficients of variation into high (> 0.75 quantile), low (< 0.25 quantile) and 
medium (≥ 0.25 quantile and  ≤ 0.75 quantile). We find that none of the coefficient of variation 
categories improve forecast accuracy compared to the original data.  However, forecast accuracy 
degraded the most when k-nTS+ (k=3) was applied to time series with small coefficients of 
variation.  
 
 
 
 
 
 
 



Table 8: AvgRelAE (and percentage of adjustments that improved accuracy) by coefficient of 
variation of the original series and the change in coefficient of variation in the protected 
series. 

  Change in Coefficient of Variation  
  Decreased Maintained 

(+/- 5%) 
Increased Total 

Original 
Coefficient of 
Variation 

Large 1.06 (49.1%) 1.14 (40.5%) 1.30 (44.7%) 1.09 (46.2%) 
Medium 1.18 (42.5%) 1.19 (40.3%) 1.12 (49.1%) 1.16 (44.1%) 
Small 1.15 (38.2%) 1.36 (31.6%) 1.27 (36.1%) 1.27 (35.7%) 

 Total 1.13 (45.0%) 1.19 (39.4%) 1.21 (41.7%) 1.17 (42.5%) 
  Proportion of Time Series  
  Decreased Maintained 

(+/- 5%) 
Increased Total 

Original 
Coefficient of 
Variation 

Large 15.9% 7.8% 1.3% 25.0% 
Medium 22.7% 11.7% 15.6% 50.0% 
Small 1.1% 2.5% 21.4% 25.0% 

 Total 39.7% 22.0% 38.3% 100.0% 
 
 
Overall, our empirical results show that privacy adjustments affect forecast accuracy differently 
than judgmental adjustments.  Specifically, we found that privacy adjustments had better forecast 
accuracy when the adjustments were small or positive, or when the coefficient of variation of the 
original series was large.  However, on average, forecast accuracy worsened for nearly every 
combination of magnitude, direction, and coefficient of variation. This is not surprising since a 
major motivation of judgmental adjustments is to improve forecast accuracy (Fildes et al., 2019) 
and judgmental adjustments have been shown to improve forecast accuracy by 5-10% on average 
(Davydenko & Fildes, 2013; Khosrowabadi et al., 2022). For our application, privacy adjustments 
blur the data for privacy reasons and are expected to reduce forecast accuracy. The secondary goal 
of our proposed privacy method is to maintain forecast accuracy, which the top performing method 
(k-nTS+ (k=3) swapping) did with only a +13.9% average degradation. Furthermore, the average 
coefficient of variation of k-nTS+ (k=3) protected data is approximately 2% less than the average 
coefficient of variation in the original data. However, the average coefficients of variation under DP 
(ϵ = 10) and AN (𝑠 = 1) were 18% and 35% larger than the average from the original data, 
respectively.  
 
 
5. Conclusions 
 
This paper examined the impact of data privacy on forecast accuracy in a centralized scenario 
where a data owner shares a protected data set with forecasters.  Our proposed k-nTS+ swapping 
method used time series features to swap the values between time series to maintain forecast 
accuracy. We demonstrated the effectiveness of our privacy method using data from a well-known 
forecasting competition where the identities of the time series needed to be kept confidential. The 
proposed method limited the average reduction in forecast accuracy to +13.9% of the original 
forecast accuracy. Nearly all other privacy methods we studied degraded forecast accuracy to 
unusable levels (over 100%) at similar levels of privacy. 
 
To the best of our knowledge, this paper is the first to create a protected time series data set 
tailored to maintain forecast accuracy.  We did this by carefully investigating the similarity between 



time series features rather than time series values. The protected data also preserved important 
features for forecasting such as spike, max variance shift, max level shift, mean, variance, strength 
of trend, and strength of seasonality. Furthermore, we showed that our k-nTS+ protected data was 
more representative of the original time series, potentially leading to increased trust and 
adoptability among organizations.   
 
A substantial portion of the privacy literature is focused on theoretical privacy guarantees such as 
differential privacy. Our findings agree with past research (Goncalves et al. 2021a) and show that 
differential privacy (and additive noise) generates unusable forecasts at reasonable levels of 
privacy. This undesirable privacy-utility tradeoff has also been demonstrated in contexts other than 
forecasting. For example, a recent paper by Blanco-Justicia et al. (2022) found that much of the 
work on differential privacy and deep learning utilized relaxed versions of differential privacy with 
large values of ϵ that theoretically do not provide meaningful levels of privacy protection. Their 
experiments found that model regularization (e.g., L2-regularization) provided comparable privacy 
protection with better accuracy and lower model learning cost than differential privacy.  In our 
application, we found that our k-nTS+ swapping method had better forecast accuracy at 
comparable levels of identification disclosure risk with differential privacy. 
 
Our proposed privacy method can also support organizations making efforts to use privacy to 
improve consumer experiences or perceptions. For example, automating the data protection 
process using k-nTS+ can limit human intrusions on personal data (Goldfarb & Tucker, 2013). 
Prioritizing privacy by implementing privacy methods could create a competitive advantage 
through increased consumer loyalty, trust, and positive performance (Martin & Murphy, 2017). 
These effects could mitigate damaging outcomes, such as poor stock returns and consumers 
falsifying information, that arise when consumers feel that their data is vulnerable. Furthermore, 
replacing sensitive data with protected data could dampen the negative effects of a data breach if 
the data were to be compromised (Martin et al., 2017). There are also potential benefits from 
complying with privacy law by using protected time series, such as avoiding the need for consumer 
consent to re-use data, removing data retention limits, and enabling cross-border data transfers 
(GDPR Recital 26; Arbuckle & El Emam, 2020). Using protected data could also help organizations 
avoid fines such as the recent $1.3 billion fined against Meta for transferring EU user data to the 
US10. 
 
Although we showed that k-nTS+ swapping balanced the tradeoff between forecast accuracy and 
privacy well, future work could also examine the utility of use cases beyond forecasting. Since many 
of the time series features were preserved and the entire protected data set was shared, forecasters 
could use this time series data for other applications. One limitation of our study was that we did 
not consider privacy metrics other than identification disclosure risk, such as attribute disclosure 
risk.  Further research could pursue this area or address whether combinations of forecasts using 
multiple protected data sets improve the privacy-utility tradeoff. 
 
This research did not receive any specific grant from funding agencies in the public, commercial, or 
not-for-profit sectors. 
 
 
 
 
 

 
10 E.U. slaps Meta with record $1.3 billion fine for data privacy violations 

https://www.msn.com/en-us/news/other/e-u-slaps-meta-with-record-1-3-billion-fine-for-data-privacy-violations/ar-AA1bvYOW
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6. Appendix 

 
6.1. Implementation Details 

 
Preprocessing 
 
Time series were pre-processed by taking the log of the original series. For the VAR model, we took 
the first difference of the log series. For the global models (RNN and LGBM), we divided each log 
series by its respective mean. 
 
Model Implementations 
 
All local models (SES, DES, TES, and AutoARIMA) were implemented using the sktime forecasting 
module (Loning et al., 2022). We used additive trend and seasonality components for DES and TES. 
We set AutoARIMA to apply a seasonal model (SARIMA) with a maximum of twenty-five iterations. 
 
The VAR model from the statsmodels (Seabold & Perktold, 2010) module was applied to subsets of 
approximately five time series at a time, ensuring that each subset consisted only of time series 
with the same length. 
 
The LGBM and RNN models were implemented using the darts module (Herzen et al., 2022). For 
both models, we reserved a validation time period immediately prior to the desired forecast 
horizon. We used Bayesian optimization (Nogueira, 2014) to optimize the hyperparameters of each 
model to minimize the absolute forecast error (L1 loss) in the validation time period. We retrained 
each model using the optimized hyperparameters and the full training data (including the 
validation period) prior to generating forecasts for the desired forecast horizon. 
 
The Bayesian optimizer was initialized for the LGBM models using ten starting points and run for 
50 iterations. For the RNN the optimizer was initialized using five starting points and run for 25 
iterations. 
 
The hyperparameters for the LGBM and RNN models and their corresponding ranges are shown in 
Tables 9 and 10. We limited the RNN to the last ten input-output window samples from each time 



series for computational efficiency and trained ten RNN models taking the median of the forecasts 
as the final forecast (Hewamalage et al., 2022). 
 
Table 9: LGBM hyperparameter ranges. 

Hyperparameter Range 
Input Window Length 25 
Learning Rate [0.01, 0.1] 
Number of Boost Rounds [50, 1000] 
Number of Leaves [10, 100] 
Bagging Frequency [1, 5] 
Bagging Fraction [0.01, 1] 
L2 Regularization Parameter [0, 0.5] 
Minimum Observations in Leaf [10, 100] 

 
Table 10: RNN hyperparameter ranges. 

Hyperparameter Range 
Input Window Length 25 
Training Length 30 
Learning Rate [0.001, 0.1] 
Weight Decay [0.0001, 0.0008] 
Number of Layers [1, 2] 
Hidden Dimension [20, 50] 
Batch Size [200, 700] 
Number of Epochs [3, 30] 
Dropout Rate [0.1, 0.5] 

 
 

6.2   Mathematical Details of Identification and Attribute Disclosure 
 
 
To perform identification disclosure, we assume a third party possesses some original data on a 
unit of interest in the protected dataset. Denote this original data 𝒄𝒊 = (𝐼𝐷𝑖, 𝑐𝑖), which contains a 
direct identifier 𝐼𝐷𝑖 (e.g., the identity of retailer 𝑖) and original data 𝑐𝑖 = (𝐴𝑖,𝑡′ , … , 𝐴𝑖,𝑡′+𝐸) which 

contains a sequence of values that are components of the original time series 𝑥𝑗.  

 
We let 𝑀𝑖 denote the random variable (from the perspective of the third party) that indicates the 
corresponding 𝑃𝐼𝐷𝑗 for 𝐼𝐷𝑖, i.e., 𝑀𝑖 = 𝑗 when the values in 𝒄𝑖  are components of the original version 

of the protected series 𝑗. Since the true value 𝑀𝑖 = 𝑗∗ is unknown, the third party predicts the value 
of 𝑀𝑖 to be the series 𝑗 with the highest match probability, conditional on the known values, as 
follows, 
 

                                                �̂�𝑖 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑗𝑃(𝑀𝑖 = 𝑗|𝑐𝑖),                                        (1) 

 
where identification disclosure occurs when 𝑀�̂� = 𝑗∗. The probability 𝑃(𝑀𝑖 = 𝑗|𝑐𝑖) is calculated as 
follows. Let �̃�𝑗 = (𝑃𝑗,𝑡′ , … , 𝑃𝑗,𝑡′+𝐸), 𝑗 = 1, … , 𝐽 denote the protected values of each time series 𝑗 that 

occur in the same time periods as 𝑐𝑖. The third party computes the similarity between 𝑐𝑖 and the 
protected values 𝑥�̃�, 𝑗 = 1, … , 𝐽 using the Euclidean distance, 

 



𝑠(𝑐𝑖, �̃�𝑗) =
1

‖𝑐𝑖−�̃�𝑗‖
2

, 𝑗 = 1, … , 𝐽. 

 
 
Using these similarities, the third party builds a probability mass function for 𝑀𝑖 over all protected 
series in 𝑋′ as 
 

𝑃(𝑀𝑖 = 𝑗 |𝑐𝑖) =
𝑠(𝑐𝑖,�̃�𝑗)

∑ 𝑠(𝑐𝑖,�̃�𝑗)
𝐽
𝑗=1

, 

 
and predicts 𝑀�̂� as in (1). 
 
To estimate the risk of identification disclosure, we perform simulations in which we sample 𝐸 
sequential values from each original time series 𝑥𝑗, and we measure the average proportion of 

series which are identified. The sampled values are denoted 𝐶 =  [𝒄1, … , 𝒄𝐽]
𝑇

. Each of the vectors 𝒄𝑖  

corresponds to one of the 𝐽 original time series, and we compute 𝑟𝑗 conditional on the sampled 

𝑐𝑖   from series 𝑗. We repeat this simulation 𝑆 times to obtain 𝑪 = {𝐶1, … , 𝐶𝑆}, and compute the 
average proportion of correctly identified time series across all external data samples and original 
time series, 
 

�̅� =
1

𝐽 × 𝑆
∑ ∑ 𝐼(�̂�𝑖

𝑠 = 𝑗∗)

𝐽

𝑖=1

𝑆

𝑠=1

 

 
 
These simulations assume that the third party in possession of 𝐶 predicts the match for each vector 
𝒄𝑖  independently of the predicted matches for other vectors. The risk estimate from a given 
simulation is equivalent to the identification risk when 𝐽 independent third parties are each in 
possession of one of the vectors 𝒄𝑖  and each attempts identification risk as described above. Overall, 
multiple vectors may be matched to the same protected time series. 
 
 

6.3   Equations for Important Time Series Features from the Literature 
 
Spectral Entropy 
 
Suppose 𝑥𝑗 is a univariate stationary time series with a finite mean and constant variance. The 

spectral density 𝑓𝑥(λ) of 𝑥𝑗 is estimated as the scaled Fourier transform of the autocovariance 

function γ𝑥(𝑘) of 𝑥𝑗. The spectral density can be thought of as the probability density function of a 

random variable Λ on the unit circle (Goerg, 2013), where for a non-zero integer 𝑘, when γ𝑥(𝑘)  ≠
0, the spectral density 𝑓𝑥(λ) will have a peak at the corresponding frequency 𝜆. The forecastability, 
or spectral entropy, of 𝑥𝑗 is measured using the Shannon entropy of 𝑓𝑥(λ), given by 

 

𝑆𝑝𝑒𝑐𝑡𝑟𝑎𝑙 𝐸𝑛𝑡𝑟𝑜𝑝𝑦 = − ∫ 𝑓�̂�(λ)𝑙𝑜𝑔
π

−π
𝑓�̂�(λ)𝑑𝜆, 

 



where the maximum entropy occurs when Λ~𝑈(−π, π). In practice, estimates of 
𝐹1range from 0 to 1, where high values represent a low signal-to-noise ratio, indicating that 𝑥𝑗 is 

difficult to forecast (Kang et al., 2017). 
 
Hurst 
 
Next, we consider a self-similarity feature quantified using the Hurst parameter (Wang et al., 2006), 
which measures the long-range dependence of a time series. Spiliotis et al. (2020) found this 
feature had the largest effect on forecast accuracy. We use the definition of self-similarity of a time 
series described by (Willinger et al., 1998). Suppose that 𝑥𝑗 is the increment process of 𝑦𝑗 , i.e., 𝑥𝑗,𝑡 =

𝑦𝑗,𝑡+1 − 𝑦𝑗,𝑡. An aggregate sequence, denoted 𝑥𝑗
(𝑚)

, is created by averaging 𝑥𝑗 over non-overlapping 

blocks of size 𝑚, where 
 

𝑥𝑗,𝑘
(𝑚)

= 1/𝑚, ∑ 𝑥𝑗,𝑖

𝑘𝑚

𝑖=(𝑘−1)𝑚+1

   𝑘 = 1,2, … 

 
 
and 𝑘 indexes the block. If 𝑦𝑗  is a self-similar time series, then  

 

𝑥𝑗 = 𝑚1−𝐻𝑥𝑗
(𝑚)

 

 
for all integers 𝑚. We use the definition of second-order self-similarity, where 𝑥𝑗 𝑖s exactly second-

order self-similar if 𝑚1−𝐻𝑥𝑗
(𝑚)

 has the same variance and autocorrelation as 𝑥𝑗 for all values of 𝑚, or 

is asymptotically second-order self-similar if this holds as 𝑚 →  ∞ (Rose, 1996). The parameter 𝐻 
is the Hurst exponent, which is estimated using the differencing term 𝑑 from a fractional ARIMA 
model, i.e., FARIMA(0, 𝑑, 0) (Wang et al., 2006; Hyndman et al., 2022), where 
 

𝐻𝑢𝑟𝑠𝑡 = 𝐻 = 𝑑 + 0.5. 
 
Estimates of 𝐻 range from 0 to 1, where 𝐻 =  0.5 corresponds to a random walk (Sobolev, 2017), 
𝐻 <  0.5 corresponds to anti-persistent or mean-reverting series, and 𝐻 >  0.5 corresponds to 
persistent time series that are more likely to maintain their current trend.  
 
Skewness 
 
Skewness measures the lack of symmetry in the distribution of the values of 𝑥𝑗 (Wang et al., 2006), 

where positive (or negative) values are associated with a right- (or left-) skewed data distribution, 
 
 

𝑆𝑘𝑒𝑤𝑛𝑒𝑠𝑠 =
1

𝑛σ3
∑(𝑥𝑗 − 𝑥�̅�)

3
𝑛

𝑡=1

. 

 
 
 
 



Kurtosis 
 
We measure Kurtosis relative to the standard normal distribution (Wang et al., 2006). Positive 
Kurtosis corresponds to distributions that tend to have a distinct peak near the mean with heavy 
tails, whereas negative Kurtosis corresponds to distributions that are relatively flat near the mean, 

 

𝐾𝑢𝑟𝑡𝑜𝑠𝑖𝑠 =
1

𝑛σ4
∑(𝑥𝑗 − 𝑥�̅�)

4
𝑛

𝑡=1

− 3, 

 
 

where 3 is the Kurtosis of the standard normal distribution. 
 
Error Autocorrelation Function (Error ACF) 

 
Next, we perform STL decomposition (Cleveland et al. 1990) to obtain the trend, seasonal, and 
remainder components of 𝑥𝑗. We use the approach of Hyndman et al. (2019) to obtain 

 
𝑥𝑗 = 𝑏𝑗 + 𝑠1,𝑗 + ⋯ + 𝑠𝑀,𝑗 + 𝑒𝑡, 

 
where 𝑏𝑗, 𝑠𝑖,𝑗, and 𝑒𝑗 are the trend, 𝑖th seasonal, and remainder components, respectively. 

 
We extract the first-order autocorrelation coefficient of the detrended and deseasonalized series, 
referred to as 'linearity' by Spiliotis et al. (2018): 

 

Error ACF =
∑ (𝑒𝑗,𝑡−�̅�)(𝑒𝑗,𝑡−1−�̅�)𝑇

𝑡=2

∑ (𝑒𝑗,𝑡−�̅�)
2𝑇

𝑡=1

. 

Error ACF is a measure of the predictability of a time series after the trend and seasonality have 
been accounted for (Kang et al. 2017). 
 
Trend and Seasonality 
 
We also compute the strength of trend (Trend) and strength of the 𝑖𝑡ℎ seasonal component 
(𝑆𝑒𝑎𝑠𝑜𝑛𝑎𝑙𝑖𝑡𝑦𝑖) as follows, 
 

𝑇𝑟𝑒𝑛𝑑 = 1 −
𝑉𝑎𝑟(𝑒𝑗)

𝑉𝑎𝑟(𝑓𝑗+𝑒𝑗)
, 

and 
 

𝑆𝑒𝑎𝑠𝑜𝑛𝑎𝑙𝑖𝑡𝑦𝑖 = 1 −
𝑉𝑎𝑟(𝑒𝑗)

𝑉𝑎𝑟(𝑠𝑖,𝑗+𝑒𝑗)
. 

 
In practice, the values of 𝑇𝑟𝑒𝑛𝑑 and 𝑆𝑒𝑎𝑠𝑜𝑛𝑎𝑙𝑖𝑡𝑦𝑖  range from 0 to 1 (Hyndman 2022). 
 
Mean and Variance 
 
The next two features are the Mean and Variance, also used by Bandara et al. (2018) to cluster 
similar time series for forecasting, which are written as follows, 

 



𝑀𝑒𝑎𝑛 =
1

𝑇
∑ 𝑥𝑗,𝑡

𝑇

𝑡=1

, 

 
 

𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒 =
1

𝑇−1
∑ (𝑥𝑗,𝑡 − 𝑥�̅�)

2𝑇
𝑡=1 . 

 
 
We also included many other features from the tsfeatures package in R. We refer the reader to 
(Hyndman et al., 2022) for explanation of these features. 
 
 

6.4   Detailed k-nTS+ Swapping Algorithm  
 
Algorithm 2: The k-nTS+ Swapping Method [Detailed] 
 
Require [Initialization]: 
 

 𝑋 = [𝑥1, … 𝑥𝐽]: the 𝐽 × 𝑇 matrix of original time series. 

𝑃 = {𝒫1, … , 𝒫𝐵}: the 𝐵 baseline privacy methods. 
 ℱ: the desired forecasting model. 
 ℳ = {𝑚1, … 𝑚𝑁}: the initial set of time series features’ names. 
 𝑘: the number of nearest neighbor time series to consider for swapping. 
 𝒦: the number of nearest neighbor time series to consider for RReliefF. 
 𝑁𝑟𝑓𝑒: the number of recursive feature elimination iterations 

 τ∗: recursive feature elimination prediction error threshold 
 
Step 1: Create Baseline Protected Datasets 
 

i. Store the data values from all series from time 𝑇 in 𝑋 as a test set: 𝑋𝑡𝑒𝑠𝑡 = 𝑋[𝑇] 
ii. Create protected data set 𝒫𝑏(𝑋[1: 𝑇 − 1]) = 𝑋𝑏 for each baseline privacy method 𝒫𝑏 ∈ 𝑃 

 
Step 2: Generate Baseline Forecasts 
 

i. Generate forecasts using ℱ for time 𝑇 based on the original data 𝑋[1: 𝑇 − 1] and each 
protected data set 𝒫𝑏 , 𝑏 = 1, … , 𝐵 

 
Step 3: Measure Forecast Accuracy 
 

i. Compute forecast errors at the series level ϵ = (ϵ1, … , ϵJ)
T

 for the original data forecasts 

and 𝜖𝑏 = (ϵ1
𝑏 , … , ϵ𝐽

𝑏)
𝑇

, 𝑏 =  1, … , 𝐵 for the protected data forecasts for time T 

 
Step 4: Extract and Select Time Series Features 
 

i. Extract cross-sectional time series features matrices 𝐶 from 𝑋[1: 𝑇 − 1] and 𝐶𝑏 , 𝑏 = 1, … , 𝐵, 
from 𝑋𝑏 , 𝑏 = 1, … , 𝐵 



ii. Create cross-sectional feature matrix 𝒞 = [𝐶1, … , 𝐶𝐵, 𝐶] and forecast error vector ℰ =

(ϵ𝑏 , … , ϵ𝐵, ϵ) by concatenating the feature matices and error vectors from the baseline 

protected and original data sets 
iii. Treat forecast errors ℰ as the target and time series features 𝒞 as the predictors. Generate 

weight 𝑊𝑛 for each feature 𝑚𝑛 using RReliefF algorithm (Robnik-Sikonja & Kononenko, 
2003) with nearest neighbor parameter 𝒦. 

iv. Select features ℳ ′ = {𝑚𝑛 ∈ ℳ ∶   𝑊𝑛 > 0} which contains the names of the 𝑆 features with 
RReliefF weights greater than zero. 

v. Create cross-sectional feature matrix 𝒞′ from 𝒞 such that 𝒞′ contains the features ℳ′ 
vi. for 𝑖 = 1, … 𝑁𝑟𝑓𝑒: 

a. Train a random forest to predict ℰ using 𝒞′. 
b. Calculate ℯ𝑖,𝑆, the mean-squared error of the random forest out-of-bag predictions 

for iteration 𝑖 and number of features 𝑆. 
c. Calculate importance 𝐼𝑛 of each feature 𝑚𝑛 ∈ ℳ ′as the change in mean-squared 

error of the out-of-bag predictions after permuting the feature 𝑚𝑛 in 𝒞′. 
d. for subset size 𝑠 =  𝑆 − 1, … ,0:  

i. Drop feature 𝑚𝑛 with the lowest importance 𝐼𝑛 from 𝒞′ such that 𝑠 features 
remain. 

ii. Assign rank 𝑟𝑖,𝑠  =  𝑠 + 1 to 𝑚𝑛 for iteration 𝑖.  
iii. if  𝑠 >  𝟎: Repeat steps (b.) and (c.) 

end for 
 end for 

 

vii. Compute ℯ̅𝑠 = ∑ 𝑒𝑖,𝑠
𝑁𝑟𝑓𝑒

𝑖=1
 the average mean-squared error of the out-of-bag predictions using 

𝑠 features for 𝑠 =  1, … , 𝑆. 

viii. Compute �̅�𝑛 = ∑ 𝑟𝑖,𝑠
𝑁𝑟𝑓𝑒

𝑖=1
, the average rank of each feature 𝑚𝑛 

ix. Identify the number of features 𝑠𝑚𝑖𝑛 with the minimum ℯ̅𝑚𝑖𝑛 

x. Calculate 𝜏𝑠 = (ℯ̅𝑠 − ℯ̅𝑚𝑖𝑛)/ℯ̅𝑚𝑖𝑛 for 𝑠 =  1, … , 𝑆, the percentage increase in the average out-

of-bag mean squared error from using 𝑠 features in the random forest model 
xi. Set 𝑠∗ to the smallest value of 𝑠 with 𝜏𝑠 ≤ 𝜏∗ 

xii. Select the 𝑠∗ features with the best (lowest) average ranks �̅�𝑛 
 
Step 5: Create Protected Data Set using k-nTS+ Swapping 
 

i. Use input k and the features selected in Step 4 to perform swapping through time T using 
Algorithm 1: The k-nTS Swapping Method. 

 
 
 

6.5   Autocorrelation Feature Results 
 
In Section 4.5.3, we noted that while k-nTS performed swapping based on the values of Spectral 
Entropy, Hurst, and Seasonality, it does not preserve these feature distributions as well as k-nTS+. 
To help explain this difference, in Figure 8 we plot the distributions of four autocorrelation-based 
features, Seasonal ACF (first coefficient of the seasonal autocorrelation function), X ACF (first 
coefficient of the autocorrelation function), X ACF10 (sum of the first ten coefficients of the 
autocorrelation function), and X PACF5 (sum of the first five coefficients of the partial 
autocorrelation function). While neither k-nTS or k-nTS+ used these autocorrelation features for 



swapping, k-nTS+ preserves the distributions of these features much better than the other privacy 
methods which again demonstrates the importance of the k-nTS+ feedback loop. 
 
Figure 8: distributions of autocorrelation-based features in the original and protected data 
sets. 
 
 
 
 
 


